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Abstract. Linear cryptanalysis against cryptographic primitivgéss known to

rely on some.PS,,.. term. But most of studies so far are purely heuristic and only
provide an argument on why linear cryptanalysis works. Other works provide an
asymptotic bound without any clue where it is applicable for practical parameters.
So there is still some doubt for the designer on whether making &Iow,, term

is enough or not.

In this paper we formally demonstrate that the efficiency of linear cryptanalysis is
uniformly bounded, on average, B§AXELP (C') which is the maximum of the
expected value of the linear probabilitP© . We further discuss on how pairwise
independent random primitives can provably resist to these attacks.

This result provides insurance for the designer that making a primitive pairwise
independent, or with a loM AXELP measure is enough to protect against linear
cryptanalysis. It also provides a quantitative evaluation tool for security evalua-
tion.

1 Introduction

Cryptographic primitives, such as symmetric encryption of message authentica-
tion codes, are cheap algorithms which are used in order to protect the confi-
dentiality or the authenticity of digital information. They are initially set up by

a secret key which is selected at random by authorized parties.

Some greedy schemes which use one key per operation, like the one-time
pad (which is due to Vernam [35]) or the Wegman-Carter authentication code [36]
provide a provable perfect security, but at an unreasonable cost in terms of key
distribution. Since Shannon [28] proved that perfect secrecy is not possible in
a cheaper way in an information theoretic sense, the only alternative is to base
security on the ability limits for complexity: a scheme is secure if no attacker
is able to mount an attack. Unfortunately, complexity lower bounds lead to too
hard problems like the P vs NP problem. So security of cryptographic primitives
seems to be bound to heuristic approaches.

Releasing théata Encryption StandardDES) [1] in the late 70’s moti-
vated researchers to work on cryptographic analysis. Real advances on the attack
strategies on block ciphers have been made in the early 90’s when Biham and
Shamir invented thdifferential cryptanalysignd applied it against DES [3,4].
They later prove that DES developers actually knew this technique and designed



DES in order to resist to it. Matsui later developed timear cryptanalysis

which was more successful on DES [18,19]. This heuristic attack, which has
been implemented, can recover the key witltaknown plaintext attack. Since

then, many researchers tried to generalize and to improve these attacks (see for
instance [9,10,11,12,13,16,17,21,30,31)).

The basic idea of linear cryptanalysis is to use the probalittify - X =
b - C(X)] for two given constants andb where- denotes the Boolean inner
product {.e. the parity of the bitwise AND). This probability should be close
to 1/2 if C' were perfect. Linear cryptanalysis exploits the distance between
this probability andl /2 when it is large enough. Indeed we definB(a,b) =
(2Prfa- X = b-C(X)] — 1)%. More precisely, linear cryptanalysis is an in-
cremental one-known plaintext attack where we simply measure the correlation
between the bita - X andb - C'(X). The complexity of this attack was heuris-
tically proven to bef2(1/LP(a,b)).

Inspired by the Nyberg [22] notion of resistance to differential cryptanal-
ysis, Chabaud and Vaudenay formalized the notion of strength against linear
cryptanalysis [5] by usin@.P,.x defined to be the maximum &fP(a, b) over
all possible choices fot andb. However the link between the resistance and
this quantity was always heuristic, so that it was not formally proven that hav-
ing a successful attack and a very &, measure is impossible. In [33],
Vaudenay proves an asymptotic bound, but it was only asymptotic and there was
no clue how high the parameter had to be so that the bound was realistic.

We solve this problem in this paper. We defilPAXELP as the maxi-
mum, over allz andb, of the expected value, over the distribution of the random
key, of LP(a,b). We prove that the complexity of attacks are lower bounded
by a function ofl /MAXELP. This demonstrates that if one wish to design a
new cryptographic primitive which provably resists to linear cryptanalysis, it is
enough to make sure thafAXELP is low. We further show that such a low
MAXELP measure comes for free when we use pairwise independent random
functions [6].

1.1 Related Work

Several researchers concentrated on the positive side of cryptanalysis: security
arguments. Usually block cipher designers try to upper bound the probability
of the best differential or linear characteristics in ad-hoc ways. Some results
apply to multi-path characteristics like Nyberg-Knudsen [23,24], Aoki-Ohta [2],
Keliheret al.[14,15], Parket al.[25,26].
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1.2 Notations
In what follows we use the following notations:

M set of all sequences which consistdoélements of a set,

Adv 4: advantage of a distinguisher (see Section 2.1),

1p: variable which is set to 1 if the predicakeis satisfied or to 0 otherwise,

LP¢(a,b): linear probability of a functior with characteristica, b) (see Sec-
tion 2).

MAXELP(C): maximum expected linear probability of a random function
(see Section 3.1).

We represent all random variables by capital letters. They are associated to
a probability distribution which will be clear from the context. For instanke,
may denote a random variable aRd[X = z] may represent the probability
that it takes a given value.

Random functions or permutations will be considered. They will be repre-
sented by random variablesg. F or C.

2 Linear Cryptanalysis

2.1 Full Linear Cryptanalysis

Linear cryptanalysis has been invented by Matsui [18,19] based on the notion of
statistical attacks which are due to Gilbettal.[7,8,29]. Full linear cryptanal-

ysis against an encryption procdssc rely on some distinguished property for

an internal permutatioty, following the idea of 1R, 2R or 3R attack of Biham
and Shamir [3,4]. More precisely, the encryption can be written

Enc = Cpost 0 C' 0 Cpre

whereCl,. andCy,.s;, are some simple pre and post processing. It usually con-
sists of a few rounds of encryption for which we can mount a dedicated attack
as it will be discussed below. Note that the three components of the encryption
here are random permutations defined by random (sub)keys.

Then, we use a distinguisher between the random permut@tamd a per-
fect random permutatio@™. The distinguisher is an algorithm which sends
queries to an oracle and eventually outputs either O or 1. We compute the prob-
ability p (resp.p*) that the algorithm outputs 1 when the oracle implements
C (resp.C*). The power of the distinguisher is quantified by thdvantage
Adv = p—p*. Good distinguishers are characterized by a high valugsdf|.

In order to make the attack practical, the distinguisher needs to use a piece
of information on the inputs and outputs 6f which can be computed from
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the plaintext and the ciphertext @inc, and some small piece of information

on the secret key through the pre and post encryption. (This is what we meant
by “a few rounds of encryption for which we can mount a dedicated attack”.)
For linear cryptanalysis, we use linear distinguishers which relies on some sta-
tistical properties of the Boolean: Cy(X) & b - Cgolst(Enc(X)) for random
known plaintextX and we compute - Cp.e(X) andb - Cgolst(Enc(X)) from

X, Enc(X), and a piece of informatioh(K’) on the keyK.

As explained in Matsui [18,19], the attack proceeds as follows. We exhaus-
tively look for the value ofh(K'). For every candidate, we make statistics on
the Boolean information. We then sort all candidate according to the statistics.
The attack works if the statistical behavior for wrong candidates looks like the
statistical behavior of the perfect random permutation so that the distinguisher
can isolate the right candidate from the others.

Therefore, the linear cryptanalysis cannot workHak: if linear distinguish-
ers have limited advantage against the internal permutéatidn the next sec-
tions we focus on linear distinguishers f0r

2.2 Linear Distinguishers

In this section we assume thatt = {0,1}"™. The inner dot product - b in
{0,1}™ is the parity of the bitwise AND of andb.

We call “basic linear distinguisher” the distinguisher characterized by a pair
(a,b) € M? with b # 0 which is depicted on Fig. 1. We notice here that the
attack depends on the way it accepts or rejects based on the final couatee.

Parameters: a complexityn, a characteristi€a, b), a set4d
Oracle: a permutatior:

1: initialize the counter value to zero

2: for i from 1 ton do

3:  pick a randomX with a uniform distribution and query far( X)
4: if X .-a=c(X) -0, increment the counter
5: end for
6: if u € A, output 1, otherwise output 0

Fig. 1. Linear Distinguisher.

As pointed out by Chabaud and Vaudenay [5], linear cryptanalysis against
is based on the quantity

LP%(a, b) — (2 Pr[X -a = e(X) 1] - 1)2.
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(Here we use Matsui’s notations taken from [20].)

2.3 Heuristic Analysis of Linear Distinguishers

When one wish to mount an attack against a cipher by using linear cryptanal-
ysis techniques, one need to have a rough idea on how efficient it will be. For
this a heuristic analysis is enough. Originally, Matsui [18,19] provided such an
complexity estimate by using the Large Number Theorem. Indeed; is a
Boolean random variable which is set to 1 if and only if the countirincre-
mented in the distinguisher of Fig. 1, we notice that'\lk are independent and
with the same distribution defined by= Pr[/V; = 1]. The final valueU of the
counter is a random variable which can be approximated to a random variable
with normal distribution of expected value= nz and standard deviation

il (1)

When: is close to% we can neglect terms of second order and approximate the
variance tar = @ Hence we have

1 x (t—nz)?
PriU <z]~ / e 2?2 dt.
oV2m J-—co

As this is the case in all concrete examples, let us assumé€'tisa random
cipher such that = Prx[X-a = C(X)-b] = 3+ (—1)"e wheres is constants
only depends o6’ and its parity is uniformly distributed. Note thaP® (a, b) =
4¢? is constant. When we use a uniformly distributed cipfiéwe can just do
the same approximation with~ 0. Hence, consideringl as a continuous set,
the advantage is

(t_%—na)2 (t—%+n5)2 (t—ﬂ 2

1 6_ 202 6_ 202 _ 2
p—p / ki —e 27 | dt
oV 2 JteA 2

n

1 (8 e oo
= / e 2 (6_2Ch 2o — 1) dt
o2 Jiea o

a = \/n.LP%(a,b) = 2e\/n

from which we deduce that the advantage is optimal wAesithe complement
2

O

where

of [% — 70, % + 7o] wherer is such thath(ar) = 7, i.e.
1
T:;+log(1+\/1—e—a2).
o
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Note that theu € A test is equivalent tgu — %| > 70. Let us take the variable
z = (t— %) /o. We obtain

22
2

* 1 /+T ( 1 7<z—2a>2 1 <z+2a>2> J
- R —= e — =€ — —e T
b=y = ). 2 2
which is independent from ande. So withn = @ (1/LPC(a, b)) we obtain a
constant maximal advantage. As an illustration, here are a few values for
andp — p*.
a |24 23 272 1 1 2 4 23
1.000 1.001 1.005 1.021 1.0851.344 2.173 4.087

— p*]0.000945 0.00377 0.0150 0.0581 0.207 0.566 0.936 0.9999

T

Note that whemy = o(1) we haver ~ 1 andp — p* (a?). So, in this
situation, the best advantage is bounded)b&n (LPC ))

2.4 Analysis of Linear Distinguishers

In this section we concentrate on a fixed permutatiom {0, 1}™. Here is our
main lemma.

Lemma 1. For the distinguisher of Fig. 1 we let® be the probability that the
output is 1 given an oracle. We letpy be the probability that it outputs 1
when the counter is incremented with probabi%tjn every iteration instead of
querying the oracle. We have

Ip¢ — po| < 24/n.LP(a,b).

Furthermore, whem increases buLPC(a b) = o(1), the maximum fojp° —po|
is asymptotically equivalent t%\/n LP¢(a,b).

Proof. We first express the probabilify’ that the distinguisher acceptsLet

N; be the random variable defined as being 1 or 0 depending on whether or not
we haveX - a = ¢(X) - b in theith iteration. All N;’s are independent and
with the same 0-or-1 distribution. Letbe the probability thaiv, = 1. We also
defined = 2z—1 = /LP(a, b). We thus want to prove thgt® — py| < 260+/n.

We have
n —u
Pi=2 ( >Z“(1—2)"
ucA u
thus )
n —Uu
ueA



We would like to upper boun¢h® — po| over all possibled depending ore.
Sincez and1 — z play a symmetric role we assume w.l.o.g. that % For
z = %, the result is trivially true, so from now on we assume that 3. Since
2%(1 — z)™ *is an increasing function in terms afwe have

" /n 1
max |p° — po| = 3 ( ) (zu(l —AT >
A o \u 2n

wherek is the least integet such that the difference in parenthesis is non neg-
ative,i.e.

k14 {nlog% —log(1 — Z)J

log z — log(1 — 2)
Replacingu by 5 in the parenthesis we obtain a negative difference. Hénee
"T“. Similarly, replacingu by n.z, the parenthesis turns out to be an increasing
function in terms ofz which is 0 forz = }. Sincez > 1 we obtain that
k < [n.z]. Therefore’z! <k —1 < (n—1)z + 2.

If n = 1, we havek = 1 thusmax 4 [p® — po| = z — 3 so the result holds.
If n =2, we havek > 2 thusk = 2 and

max |p° | <z 1) (z—i— 1) < 3 (z 1)
e o= (51 N _3/ 1
4P~ bo 2 2) =2 2

so the result holds as well. We now concentrate:on 3.
We use the following identity taken from [27].

uZi:k <Z> 21— )" =k <Z> /Oz tk*1(1 _ t)”’kdt. )

We obtain

c _ n k— 1 n—k
sl — ol = i k) 11— bt )
thus .
ol <k tk ta —onr).
p° — pol ( ) ( 5 fél[(?’f] ")
The maximum is obtained fdr= % hence
n 1\ (k= 1)k 1(n—k)nFk
c _ <k N .

1 We can easily prove it by derivating it in terms af



Letz = 2521 — 1. We havek — 1 = 271 (1 + z) andn — k = %51 (1 — 2). We
have0 < z <1 and

p° —pol <k (Z) <z - ;) 2n1_1 ((1 + )1 - x)l—x)"%

By usingk () = n (k 1) and the Stirling approximation we obtain that this

bound is asymptotically equal 169% so the bound we want to prove is note so
loose.
We can easily prove thal + z)' (1 — z)1=* < 227° Hence

om<(3) ()t

Sincek — 1 < (n — 1)z + z we haver < 0 + %5 + -1 =m0+l Thys

n

(no+1)2
[P —po| <0 x {k(Z) 2” x 2"

Forn = 3 we havek (}) 5= < 2 thus

3 (30+1)2

1
|pc—p0|§29\/ﬁx27\/§><1><2 nt

Foro < # we obtain|p® — pg| < 26,/n and this remains true even for

0 > Q\f Let us now concentrate on> 4.

The () term is upper bounded k") with » = [%]. Furthermore we have

() =<11(1-3)

with equality whem: is even. Then

w(2)2) <53

< _Z -
<331

=1
1 r+1 dt
2 t
< —§log(r+ 1)

< -

1 n
< —=log—-+1
< 2og2+



therefore

Now we have

(R
k)om =\k_q)m =3 +1—

We deduce
(n9+1) k
|p—nﬂ<w¢ﬁx2nl -3
Whend\/n < & andn > 4 we havew — 3 < 0s0 we obtairjp® — po| <

260+/n. Whend/n > % this also holds since the right hand side of the inequality
is greater than 1 and the left hand side is a difference between two probabilities.
This proves the upper bound.

By definition of k we havez*~1(1 — 2)»* > L= so we have*~1(1 —

2277.1
Hnk > j foranyt € 3, 2]. From Equation (2) we deduce

1
2n—1(140
el = g <Rk ) an )

Ifo=o ,we have: = 2 +o(y/n) thus(?) ~ 2=— from Stirling Formula.
vl 2 k)™ Vo

Hencemax 4 [p©—po| is asymptotically larger tha%ﬂ::. Sinceitis also smaller,
this is indeed an equivalent. O

3 Cipher Resistance to Linear Cryptanalysis

We now concentrate on a ciph@€ron {0, 1} which is defined by a secret key
which is selected at random. We can thus considas a random permutation.
We compare it to an ideal ciphéf* which is another random permutation with
a uniform distribution. We call it the perfect cipher.

3.1 TheMAXELP Measure

We focus on the expected vallE(LPC(a, b)) over the distribution of” and
we define

MAXELP(C) = max (LPC(a,b)) .

There is a linear expression of this mean value in terms of the pairwise distribu-
tion as expressed by the following result.
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Lemma 2. Given a random permutatiof’ over {0, 1}™, for anya andb ,we
have

E(LPC(CL, b)) = 9—2m Z (_1)(11@x2)-a+(y1€9y2)-b Pr |:(x17:1:2) AN (ybyg)}

1,79
Y1,Y2

_ C
=1 22 2m Z 1zl~a:y1«b Pr {(ml,xg) — (yl,yg)} .
T 7T 2 07y2 b
Y17Y2

If C' has a uniform distributiong # 0 andb # 0, we haveE(LP¢ (a,b)) =
77— Note thatE(LPC (0, b)) = 0 for b # 0.
Proof. In order to prove it, we first notice thatPrx[X -a = C(X) -b] — 1 =

E ((—1)X"1+C(X)'b>), and we expreskP®(a, b) as
LPC (a,b) = B ((—1)¥18X)a(C)ec(x)1)

where X; and X, are independent uniformly distributed random variables. We
have

B(LP®(a,b) = 272" Y (—1)1 82 et P [ (1, 1) S (g1, 1) |
1,72
Y1,92

The contribution of terms for which;, = x5 is equal to2~. Considering that
C is a permutation we can concentrateagn# xo andy; # y». Then we split
the remaining sum into four groups depending on the two(bitsa ® y; - b, z2 -
a®yz-b). Let X, 5, be the sum of all probabilities for which the two bits are
(b1,b2), Ty # x2, @andy; # yo. We have

E(LP%(a,b)) =27 +272"500 — 272Xy — 272" o + 272X .

Due to symmetry we havej ; = X o. Furthermore, the sum of the four sums
is2™(2™ — 1). Hence

E(LPC(a,b)) =27 +272m x 2m(2™ — 1) — 4 x 272%™ 3
which leads to our second result. Computations whiés uniformly distributed

are straightforward. O

3.2 Resistance to Linear Distinguishers

Theorem 3. Let C be a cipher onM = {0,1}"™. For any linear distinguisher
(as depicted on Fig. 1) betweé&hand the ideal ciphe€* we have

Advrig, 1 < 3{/n.MAXELP(C) + 3\3/E :
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Proof. We first notice that the advantage is zero whes 0 or b = 0 so the
bound holds. Let us now assume that 0 andb # 0.

We now take a random permutatiGhwith the corresponding andp® as
in Lemma 1. Lets = F((2Z — 1)?). (Note thats = E(LP®(a,b)).) When
|27 — 1] < «, Lemma 1 says that

P —pol <2 x av/n.
Since(2Z —1)? is positive, the probability thd2Z — 1| is greater tham is less
than-%;. Hence
1)
p—pol <2 xavn+ —
for anya.
1
Let us now fixa = (%) *. We obtainjp — po| < 3 x V/on.
We recall that = E (LPC(a, b)). We finally note that? (LPC* (a, b)) =
sm— from Lemma 2 so we can have

27”71
n
* —pol <3¢ .
p* = pol <3¢/ 50—

We finally use thatp — p*| < |p — po| + [p* — po|- 0

3.3 Using Pairwise Independent Permutations
We recall the following definition.

Definition 4 (Carter-Wegman [6], Wegman-Carter [36]). Let M be a finite

sets. LetC' be a random permutation ovet1. We say thatC' is a (perfect)

pairwise independent permutation if for aay, x2, y1, y2 € M such thate; #

T2, andy; # yo, we have

_ 1

#MHM - 1)

Due to Lemma 2, it is a pairwise independent permutation, we have

E(LP%(a,b)) = E(LP (a,b))

for anya andb. HenceMAXELP(C) = 51 . We deduce the following result.

Theorem 5. Let C' be a cipher onM = {0, 1}"™ which is a perfect pairwise
independent permutation. For any linear distinguisher (as depicted on Fig. 1)
betweer”' and the ideal ciphe€* we have

n
Advpig. 1 <64 om 1"

11

Pr(C(z1) = y1, C(z2) = y2]




The notion of pairwise independent permutation extends as follows.

Definition 6. Let M be a finite sets. Laf’ be a random permutation ovev1.
Let M5 be the set of all functions froov* to the fieldR of real numbers. Let
d be a distance ovets. We define We defif€]? € M, by

[CT? (21, 22,91, y2) = Pr[C(x1) = y1, C(22) = yal.

We similarly definéC*]? for a uniformly distributed random permutatiaii*.
We say thatC is an e-d-almost pairwise independent permutation if we have
d([C]%,[C*]?) <.

Several distances are quite significant in cryptography, including the metric in-
duced by thé||.|||oc Norm as defined in [32,34] by

1A lloo =~ max Yo f@ e, )|

o) EM?2
(@re2) €M (e

We can also use the, norm defined by

1 fll2 = > > flm, e, y1,12)?

(z1,22)EM? (y1,y2)EM?

We can thus conclude with the following result.

Theorem 7. Let C be a cipher onM = {0, 1}™ which is either are-|||.|||so-
almost pairwise independent permutation, orsah,-almost pairwise indepen-
dent permutation. For any linear distinguisher (as depicted on Fig. 1) between
C and the ideal ciphe€* of complexityn we have

; n . n
AdVFig.1 < 3\3/71.54— om — 1 +3€/2m_1.

Proof. Fora # 0 andb # 0, from Lemma 2 we have
1 i
2m — 1
272 N (—1)fer(ey) ([0]2(33173?27?;1,3/2) - [C*}2($17$27y1,y2))

T1,T9
Y1:Y2

E (LPC(a,b)) -

for some functionf, ;(z, y). We can thus deduce

MAXELP(C) < +ICP = [CP ]l

2m —1

MAXELP(C) < 50—

We conclude by using Theorem 3. O

+ 0] = [CP[le-
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4 Discussion and Conclusion

We demonstrated that the advantage of any linear distinguisher is uniformly
bounded by a function of the number of sampitesultiplied by theMAXELP
measure. It is further itself bounded by the pairwise independence according to
several metrics. This shows that linear distinguishers cannot lead to significant
attacks unless = 2(1/MAXELP), which corresponds to heuristic arguments
that were given so far.

The practical consequence, for the designer of new cryptographic primitives,
is that we need to make sure tRdtAXELP is small for a given number of
rounds, either by using pairwise independence, or by any other construction.
Then, the designer only needs to add a few rounds which could play the role
of the pre and post processing in linear cryptanalysis. (These additional rounds
are usually referred to as the “safety margin”.) Our result formally demonstrates
that no linear distinguisher will manage to distinguish the core rounds from an
ideal primitive by linear cryptanalysis techniques.

We can also use our result for security evaluation purposes. If we can es-
timate theMAXELP measure of core rounds, we can have a fair idea on a
security upper limit.
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