A Concise Introduction
to
Random Number Generators

Peter Hellekalek

November 15, 2004

1 Introduction

Since John von Neumann we know that anyone who generates random numbers
(or random bits) on a deterministic machine “is in a state of sin” (see Knuth[7]).

It is difficult to define or measure the extent of this sin by mathematical means.

History shows that the generation and the application of random numbers is
more difficult than one might expect. We refer to the story on randomness
and the Netscape browser, (see http://www.cs.berkeley.edu/~daw/rnd for
details), and to a tragic historical example, called the Rosenberg story and the
VENONA files, see Kahn[6] and http://www.nsa.gov/venona .

1.1 What is our goal?

We want a device (hardware or algorithm) whose output is computationally
indistinguishable from truly random sources. We would like to generate bits (or
numbers) that appear like being sampled from a uniform distribution on {0, 1}
(or [0, 1]), independently of each other.

What we get in practice from algorithms like AES, TT800, ...and hardware
generators are finite bit strings that pass many tests of randomness.

So, what is randomness?

1.2 What is this talk about?

In this talk, we will discuss criteria for random number generators. We will
present some of the main theoretical concepts and we will also have a closer
look at statistical testing.



2 Quotes

When generating random numbers or bits on a computer, we will be restricted to
finite bit strings. What is a finite random sequence? In the words of Kolmogoroff,

“A finite sequence is random if there is no short sequence that de-
scribes it fully, in some unambigous mathematical notation.”

In the very same spirit, Calude[1] defines
“A string is random if it cannot be algorithmically compressed.”
Hence, in the context of Kolmogorov complexity,
Randomness = Incompressibility.

For practitioners it will be interesting (and amusing) to know what theoreticians
think of their theoretical findings:

“In the previous section, we recommended new definitions of pseu-

dorandomness in terms of strong unpredictability and Kolmogoroff
complexity. In practice, we may not need such stronger definition.

...it is practically sufficient to consider the sequences which with-
stand the following five basic tests: frequency test, serial test, polar
test, runs test, autocorrelation test.”

Randomness of finite sequences is in the eye of the beholder. As Kendall says,

“Finite sequences can only be random with respect to the tests of
randomness used.”

Therefore, we will have to study tests for randomness a little bit closer.

3 Types of Random Number Generators

We may distinguish random number generators (RNGs) by their construction
principle:

e hardware-based RNGs,

e software-based (algorithmic) RNGs,
and by the intended application:

e RNGs for stochastic simulation (keyword: Monte Carlo method),

e RNGs for cryptographic applications.



Software-based RNGs, i.e., algorithms to produce random numbers, may be
divided into:

e linear algorithms, and

e nonlinear algorithms.

Deterministic algorithms to produce random numbers are often called pseudo-
random number generators. We will not use this notion here.

Every RNG has its advantages and its deficiencies. No RNG is perfect. RNGs
are tools and the appropriate range of applications for a given RNG has to be
chosen with care.

Hardware RNGs rely upon physical phenomena like electronic noise or radioac-
tive decay. Their properties are the following:

e slow,
e not portable,
e unpredictable output,

e theoretical analysis is impossible.

A typical example of a hardware RNGs is SG100, which is based on electronic
noise. Software RNGs employ deterministic algorithms to stretch a short seed

FILTER POWER

- |~ outPUT

— GND
o=

Figure 1: SG100 (Protego SA, Sweden)

into a long sequence. They have the following properties:

e (usually) very fast,
e portable,
e generate reproducible output,

e theoretical analysis is possible.



These algorithms may be divided into two classes, linear and nonlinear RNGs.
Linear RNGs are based on a linear arithmetical operation, like a linear congru-
ence, a linear shift register, etc. These RNGs are well-known in simulation, but
insecure for cryptography.

Nonlinear RNGs employ nonlinear arithmetical operations like modular inver-
sion in a finite field, etc. Some of these generators are quite efficient, but most
are much slower than their linear counterparts. Nonlinearity does not necessarily
mean cryptographic security (see Menezes et al.[11] for references). Well-known
examples of nonlinear RNGs are inversive-congruential generators (ICGs; see
Hellekalek[4] for a survey), AES, the advanced encryption standard (see Daemen
and Rijmen[3] for the algorithm and Hellekalek and Wegenkittl[5] for statistical
results), and the stream ciphers of modern applied cryptography.

4 Criteria

What is a good RNG?

The answer to this question will depend on the application. Three aspects will
have to be studied in the assessment of an RNG:

e Is there some kind of theoretical analysis of the algorithm available?
e What statistical test results are available?

e What are the practical aspects of our RNG?

4.1 Theoretical Analysis

Theoretical analysis of a software-based RNG refers to the mathematical study
of properties like the period length, the inner structure, and correlations within
output streams.

If we cannot say anything about the period length of the output streams, an im-
portant information will be missing . For most applications, such RNGs should
be avoided. If we have no idea about the existence or absence of simple (geo-
metric) structures or simple bit patterns in the output stream then, again, we
should have second thoughts about using this RNG. If such intrinsic structures
have not been studied at all, then not only the security of our RNG is at risk,
but also stochastic simulations may go wrong (see Compagner|2]):

“Monte Carlo results are misleading when correlations hidden in the
random numbers and in the simulated system interfere construc-
tively.”

There is an important difference between cryptographic RNGs and simulation
RNGs. The algorithms for simulation RNGs are much simpler than their coun-
terparts in cryptography. As a consequence, it is much easier to derive theoretical
results for a simulation RNG than for a cryptographic RNG. In cryptography



linear algorithms are avoided for reasons of security. One uses highly nonlin-
ear algorithms. Hence, in most cases, there is no chance to carry out the type
of number-theoretic correlation analysis that is so common among simulation
RNGs (for the latter, see Niederreiter[13]).

4.2 Statistical Testing

Statistical testing of RNGs means that the RNG is treated as a black box. No
use is made of the knowledge of the algorithm.

Given observations z1,...,x, of the random variables X1,..., X,, we want to
estimate some parameter or figure of merit § or the distribution of the X;’s.

We employ a functionAé, the so-called test statistic, which assigns to the sample
Z1,.-.,%, the value 0(x1,...,z,). The function 6 should be chosen such that
é(a:l, ...,&y) is as close as possible to the target 6. Statistical test designs differ
by the choice of the target distribution and, if the same distribution or param-
eter 6 is considered, by the choice of the test statistic #. Some test statistics
are numerically more efficient than others, and some have better theoretical

properties or better convergence rates (if the sample size n tends to infinity).

In order to illustrate such a situation, we will compare entropy estimators like
the approximate entropy of Pincus and Singer[14, 15], Maurer’s[10] Universal
Test, and the well-known overlapping serial test (see Wegenkittl[17] for the
relationship between these statistics).

For random number generation, there are two well-known batteries of statisti-
cal tests, DIEHARD of Marsaglia (see http://www.cs.hku.hk/~diehard for
a recent version), and the NIST test suite [12]. The extensive new test bench
TestUO01 of L’Ecuyer and Simard[9] will provide much more extensive possibili-
ties for statistical testing (see http://www.iro.umontreal.ca/~simardr/).

5 Examples and Links

In the final part of my talk, I will point out an interesting concept called
“HAVEGE” by Seznec and Sendrier[16] to gather entropy that appears much
more effective (and secure) than, for example, dev/random.

As starting points to the topics of RNGs for simulation, I would like to recom-
mend the excellent survey of L’Ecuyer[8]. David Wagner has collected numerous
links to randomness for crypto, see http://www.cs.berkeley.edu/~daw/rnd/.

References

[1] C. Calude. Information and Randomness. Springer Verlag, 1994.

[2] A. Compagner. Operational conditions for random-number generation.
Phys. Review FE, 52:5634-5645, 1995.



[3] J. Daemen and V. Rijmen. The Design of Rijndael. Springer Verlag, New
York, 2002.

[4] P. Hellekalek. Inversive pseudorandom number generators: concepts, re-
sults, and links. In C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Golds-
man, editors, Proceedings of the 1995 Winter Simulation Conference, pages
255-262, 1995.

[5] P. Hellekalek and S. Wegenkittl. Empirical evidence concerning AES. ACM
TOMACS, 13:322-333, 2003.

[6] D. Kahn. The Code Breakers. Macmillian, New York, 1967.

[7] D.E. Knuth. The Art of Computer Programming, Vol. 2. Addison-Wesley,
Reading, Mass., third edition, 1998.

[8] P. L’Ecuyer. Random number generation. In J.E. Gentle, W. Haerdle,
and Y. Mori, editors, Handbook of Computational Statistics, pages 35-70.
Springer, New York, 2004.

[9] P. L’Ecuyer and R. Simard. TestU01: A Software Library in ANSI C for
Empirical Testing of Random Number Generators, 2002. Software user’s
guide.

[10] U. Maurer. A universal statistical test for random bit generators. J. Cryp-
tology, 5:89-105, 1992,

[11] A.J. Menezes, P. C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, 1997.

[12] National Institute of Standards and Technology (NIST) Special Publica-
tion 800-22. A Statistical Test Suite for the Validation of Random Number
Generators and Pseudo Random Number Generators for Cryptographic Ap-
plications, 2001. Available from http://csrc.nist.gov/rng.

[13] Harald Niederreiter and Igor E. Shparlinski. Recent advances in the theory
of nonlinear pseudorandom number generators. In Fang, Kai-Tai (ed.) et
al., Monte Carlo and quasi-Monte Carlo methods 2000. Proceedings of a
conference, held at Hong Kong Baptist Univ., Hong Kong SAR, China,
November 27 - December 1, 2000, pages 86—102. Springer, Berlin, 2002.

[14] S. Pincus and B. H. Singer. Randomness and degrees of irregularity. Proc.
Natl. Acad. Sci. USA, 93:2083-2088, 1998.

[15] S. Pincus and B. H. Singer. A recipe for randomness. Proc. Natl. Acad.
Sci. USA, 95:10367-10372, 1998.

[16] A. Seznec and N. Sendrier. HAVEGE: A user-level software heuristic for
generating empirically strong random numbers. ACM TOMACS, 13:334-
346, 2003.

[17] S. Wegenkittl. Monkeys, gambling, and return times: Assessing pseudo-
randomness. In P.A. Farrington, H.B. Nembhard, D.T. Sturrock, and
G.W. Evans, editors, Proceedings of the 1999 Winter Simulation Confer-
ence, pages 625631, Piscataway, N.J., 1999. IEEE Press.



